Computer Science > Computer Vision and Pattern Recognition
[Submitted on 4 Feb 2023 (v1), last revised 18 Jan 2024 (this version, v3)]
Title:Semantic-Guided Generative Image Augmentation Method with Diffusion Models for Image Classification
View PDF HTML (experimental)Abstract:Existing image augmentation methods consist of two categories: perturbation-based methods and generative methods. Perturbation-based methods apply pre-defined perturbations to augment an original image, but only locally vary the image, thus lacking image diversity. In contrast, generative methods bring more image diversity in the augmented images but may not preserve semantic consistency, thus incorrectly changing the essential semantics of the original image. To balance image diversity and semantic consistency in augmented images, we propose SGID, a Semantic-guided Generative Image augmentation method with Diffusion models for image classification. Specifically, SGID employs diffusion models to generate augmented images with good image diversity. More importantly, SGID takes image labels and captions as guidance to maintain semantic consistency between the augmented and original images. Experimental results show that SGID outperforms the best augmentation baseline by 1.72% on ResNet-50 (from scratch), 0.33% on ViT (ImageNet-21k), and 0.14% on CLIP-ViT (LAION-2B). Moreover, SGID can be combined with other image augmentation baselines and further improves the overall performance. We demonstrate the semantic consistency and image diversity of SGID through quantitative human and automated evaluations, as well as qualitative case studies.
Submission history
From: Bohan Li [view email][v1] Sat, 4 Feb 2023 02:47:41 UTC (5,043 KB)
[v2] Tue, 12 Sep 2023 13:43:38 UTC (10,244 KB)
[v3] Thu, 18 Jan 2024 14:03:28 UTC (9,992 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.