Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 22 Feb 2023]
Title:Slim U-Net: Efficient Anatomical Feature Preserving U-net Architecture for Ultrasound Image Segmentation
View PDFAbstract:We investigate the applicability of U-Net based models for segmenting Urinary Bladder (UB) in male pelvic view UltraSound (US) images. The segmentation of UB in the US image aids radiologists in diagnosing the UB. However, UB in US images has arbitrary shapes, indistinct boundaries and considerably large inter- and intra-subject variability, making segmentation a quite challenging task. Our study of the state-of-the-art (SOTA) segmentation network, U-Net, for the problem reveals that it often fails to capture the salient characteristics of UB due to the varying shape and scales of anatomy in the noisy US image. Also, U-net has an excessive number of trainable parameters, reporting poor computational efficiency during training. We propose a Slim U-Net to address the challenges of UB segmentation. Slim U-Net proposes to efficiently preserve the salient features of UB by reshaping the structure of U-Net using a less number of 2D convolution layers in the contracting path, in order to preserve and impose them on expanding path. To effectively distinguish the blurred boundaries, we propose a novel annotation methodology, which includes the background area of the image at the boundary of a marked region of interest (RoI), thereby steering the model's attention towards boundaries. In addition, we suggested a combination of loss functions for network training in the complex segmentation of UB. The experimental results demonstrate that Slim U-net is statistically superior to U-net for UB segmentation. The Slim U-net further decreases the number of trainable parameters and training time by 54% and 57.7%, respectively, compared to the standard U-Net, without compromising the segmentation accuracy.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.