Computer Science > Information Theory
[Submitted on 1 Mar 2023 (v1), last revised 9 Mar 2023 (this version, v2)]
Title:Near-Field Modelling and Performance Analysis for Extremely Large-Scale IRS Communications
View PDFAbstract:Intelligent reflecting surface (IRS) is an emerging technology for wireless communications, thanks to its powerful capability to engineer the radio environment. However, in practice, this benefit is attainable only when the passive IRS is of sufficiently large size, for which the conventional uniform plane wave (UPW)-based far-field model may become invalid. In this paper, we pursue a near-field modelling and performance analysis for wireless communications with extremely large-scale IRS (XL-IRS). By taking into account the directional gain pattern of IRS's reflecting elements and the variations in signal amplitude across them, we derive both the lower- and upper-bounds of the resulting signal-to-noise ratio (SNR) for the generic uniform planar array (UPA)-based XL-IRS. Our results reveal that, instead of scaling quadratically and unboundedly with the number of reflecting elements M as in the conventional UPW-based model, the SNR under the new non-uniform spherical wave (NUSW)-based model increases with $M$ with a diminishing return and eventually converges to a certain limit. To gain more insights, we further study the special case of uniform linear array (ULA)-based XL-IRS, for which a closed-form SNR expression in terms of the IRS size and locations of the base station (BS) and the user is derived. Our result shows that the SNR is mainly determined by the two geometric angles formed by the BS/user locations with the IRS, as well as the dimension of the IRS. Numerical results validate our analysis and demonstrate the necessity of proper near-field modelling for wireless communications aided by XL-IRS.
Submission history
From: Chao Feng [view email][v1] Wed, 1 Mar 2023 12:36:57 UTC (418 KB)
[v2] Thu, 9 Mar 2023 02:55:48 UTC (627 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.