Computer Science > Computational Geometry
[Submitted on 20 Jun 2023]
Title:Observation Routes and External Watchman Routes
View PDFAbstract:We introduce the Observation Route Problem ($\textsf{ORP}$) defined as follows: Given a set of $n$ pairwise disjoint compact regions in the plane, find a shortest tour (route) such that an observer walking along this tour can see (observe) some point in each region from some point of the tour. The observer does \emph{not} need to see the entire boundary of an object. The tour is \emph{not} allowed to intersect the interior of any region (i.e., the regions are obstacles and therefore out of bounds). The problem exhibits similarity to both the Traveling Salesman Problem with Neighborhoods ($\textsf{TSPN}$) and the External Watchman Route Problem ($\textsf{EWRP}$). We distinguish two variants: the range of visibility is either limited to a bounding rectangle, or unlimited. We obtain the following results:
(I) Given a family of $n$ disjoint convex bodies in the plane, computing a shortest observation route does not admit a $(c\log n)$-approximation unless $\textsf{P} = \textsf{NP}$ for an absolute constant $c>0$. (This holds for both limited and unlimited vision.)
(II) Given a family of disjoint convex bodies in the plane, computing a shortest external watchman route is $\textsf{NP}$-hard. (This holds for both limited and unlimited vision; and even for families of axis-aligned squares.)
(III) Given a family of $n$ disjoint fat convex polygons, an observation tour whose length is at most $O(\log{n})$ times the optimal can be computed in polynomial time. (This holds for limited vision.)
(IV) For every $n \geq 5$, there exists a convex polygon with $n$ sides and all angles obtuse such that its perimeter is \emph{not} a shortest external watchman route. This refutes a conjecture by Absar and Whitesides (2006).
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.