Computer Science > Computation and Language
[Submitted on 3 Jul 2023 (v1), last revised 27 Jul 2023 (this version, v2)]
Title:Fraunhofer SIT at CheckThat! 2023: Tackling Classification Uncertainty Using Model Souping on the Example of Check-Worthiness Classification
View PDFAbstract:This paper describes the second-placed approach developed by the Fraunhofer SIT team in the CLEF-2023 CheckThat! lab Task 1B for English. Given a text snippet from a political debate, the aim of this task is to determine whether it should be assessed for check-worthiness. Detecting check-worthy statements aims to facilitate manual fact-checking efforts by prioritizing the claims that fact-checkers should consider first. It can also be considered as primary step of a fact-checking system. Our best-performing method took advantage of an ensemble classification scheme centered on Model Souping. When applied to the English data set, our submitted model achieved an overall F1 score of 0.878 and was ranked as the second-best model in the competition.
Submission history
From: Inna Vogel [view email][v1] Mon, 3 Jul 2023 09:27:46 UTC (213 KB)
[v2] Thu, 27 Jul 2023 14:43:56 UTC (213 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.