Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 12 Jul 2023]
Title:Autonomous and Ubiquitous In-node Learning Algorithms of Active Directed Graphs and Its Storage Behavior
View PDFAbstract:Memory is an important cognitive function for humans. How a brain with such a small power can complete such a complex memory function, the working mechanism behind this is undoubtedly fascinating. Engram theory views memory as the co-activation of specific neuronal clusters. From the perspective of graph theory, nodes represent neurons, and directed edges represent synapses. Then the memory engram is the connected subgraph formed between the activated nodes. In this paper, we use subgraphs as physical carriers of information and propose a parallel distributed information storage algorithm based on node scale in active-directed graphs. An active-directed graph is defined as a graph in which each node has autonomous and independent behavior and relies only on information obtained within the local field of view to make decisions. Unlike static directed graphs used for recording facts, active-directed graphs are decentralized like biological neuron networks and do not have a super manager who has a global view and can control the behavior of each node. Distinct from traditional algorithms with a global field of view, this algorithm is characterized by nodes collaborating globally on resource usage through their limited local field of view. While this strategy may not achieve global optimality as well as algorithms with a global field of view, it offers better robustness, concurrency, decentralization, and bioviability. Finally, it was tested in network capacity, fault tolerance, and robustness. It was found that the algorithm exhibits a larger network capacity in a more sparse network structure because the subgraph generated by a single sample is not a whole but consists of multiple weakly connected components. In this case, the network capacity can be understood as the number of permutations of several weakly connected components in the network.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.