Computer Science > Computation and Language
[Submitted on 5 Jul 2023 (v1), last revised 26 Aug 2023 (this version, v2)]
Title:External Reasoning: Towards Multi-Large-Language-Models Interchangeable Assistance with Human Feedback
View PDFAbstract:Memory is identified as a crucial human faculty that allows for the retention of visual and linguistic information within the hippocampus and neurons in the brain, which can subsequently be retrieved to address real-world challenges that arise through a lifetime of learning. The resolution of complex AI tasks through the application of acquired knowledge represents a stride toward the realization of artificial general intelligence. However, despite the prevalence of Large Language Models (LLMs) like GPT-3.5 and GPT-4 \cite{brown2020language, leiter2023chatgpt, zaitsu2023distinguishing, OpenAI2023GPT4TR} , which have displayed remarkable capabilities in language comprehension, generation, interaction, and reasoning, they are inhibited by constraints on context length that preclude the processing of extensive, continually evolving knowledge bases. This paper proposes that LLMs could be augmented through the selective integration of knowledge from external repositories, and in doing so, introduces a novel methodology for External Reasoning, exemplified by ChatPDF. Central to this approach is the establishment of a tiered policy for \textbf{External Reasoning based on Multiple LLM Interchange Assistance} in \cref{fig:overall}, where the level of support rendered is modulated across entry, intermediate, and advanced tiers based on the complexity of the query, with adjustments made in response to human feedback. A comprehensive evaluation of this methodology is conducted using multiple LLMs and the results indicate state-of-the-art performance in \cref{comparison} , surpassing existing solutions including this http URL. Moreover, the paper emphasizes that this approach is more efficient compared to the direct processing of full text by LLMs. The source code is publicly available at: \url{this https URL}.
Submission history
From: Akide Liu [view email][v1] Wed, 5 Jul 2023 17:05:32 UTC (1,162 KB)
[v2] Sat, 26 Aug 2023 19:29:03 UTC (1,162 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.