Computer Science > Multiagent Systems
[Submitted on 22 Jul 2023 (v1), last revised 11 Sep 2023 (this version, v2)]
Title:Inferring epidemic dynamics using Gaussian process emulation of agent-based simulations
View PDFAbstract:Computational models help decision makers understand epidemic dynamics to optimize public health interventions. Agent-based simulation of disease spread in synthetic populations allows us to compare and contrast different effects across identical populations or to investigate the effect of interventions keeping every other factor constant between ``digital twins''. FRED (A Framework for Reconstructing Epidemiological Dynamics) is an agent-based modeling system with a geo-spatial perspective using a synthetic population that is constructed based on the U.S. census data. In this paper, we show how Gaussian process regression can be used on FRED-synthesized data to infer the differing spatial dispersion of the epidemic dynamics for two disease conditions that start from the same initial conditions and spread among identical populations. Our results showcase the utility of agent-based simulation frameworks such as FRED for inferring differences between conditions where controlling for all confounding factors for such comparisons is next to impossible without synthetic data.
Submission history
From: Abdulrahman Ahmed [view email][v1] Sat, 22 Jul 2023 23:59:55 UTC (1,654 KB)
[v2] Mon, 11 Sep 2023 05:06:35 UTC (1,738 KB)
Current browse context:
cs.MA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.