Statistics > Machine Learning
[Submitted on 25 Jul 2023 (v1), last revised 7 Nov 2023 (this version, v3)]
Title:How to Scale Your EMA
View PDFAbstract:Preserving training dynamics across batch sizes is an important tool for practical machine learning as it enables the trade-off between batch size and wall-clock time. This trade-off is typically enabled by a scaling rule, for example, in stochastic gradient descent, one should scale the learning rate linearly with the batch size. Another important machine learning tool is the model EMA, a functional copy of a target model, whose parameters move towards those of its target model according to an Exponential Moving Average (EMA) at a rate parameterized by a momentum hyperparameter. This model EMA can improve the robustness and generalization of supervised learning, stabilize pseudo-labeling, and provide a learning signal for Self-Supervised Learning (SSL). Prior works have not considered the optimization of the model EMA when performing scaling, leading to different training dynamics across batch sizes and lower model performance. In this work, we provide a scaling rule for optimization in the presence of a model EMA and demonstrate the rule's validity across a range of architectures, optimizers, and data modalities. We also show the rule's validity where the model EMA contributes to the optimization of the target model, enabling us to train EMA-based pseudo-labeling and SSL methods at small and large batch sizes. For SSL, we enable training of BYOL up to batch size 24,576 without sacrificing performance, a 6$\times$ wall-clock time reduction under idealized hardware settings.
Submission history
From: Dan Busbridge [view email][v1] Tue, 25 Jul 2023 20:33:48 UTC (8,074 KB)
[v2] Thu, 27 Jul 2023 17:17:33 UTC (8,095 KB)
[v3] Tue, 7 Nov 2023 17:57:42 UTC (11,156 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.