Computer Science > Emerging Technologies
[Submitted on 2 Aug 2023]
Title:Microfluidic Molecular Communication Transmitter Based on Hydrodynamic Gating
View PDFAbstract:Molecular Communications (MC) is a bio-inspired paradigm for transmitting information using chemical signals, which can enable novel applications at the junction of biotechnology, nanotechnology, and information and communication technologies. However, designing efficient and reliable MC systems poses significant challenges due to the complex nature of the physical channel and the limitations of the micro/nanoscale transmitter and receiver devices. In this paper, we propose a practical microfluidic transmitter architecture for MC based on hydrodynamic gating, a widely utilized technique for generating chemical waveforms in microfluidic channels with high spatiotemporal resolution. We develop an approximate analytical model that can capture the fundamental characteristics of the generated molecular pulses, such as pulse width, pulse amplitude, and pulse delay, as functions of main system parameters, such as flow velocity and gating duration. We validate the accuracy of our model by comparing it with finite element simulations using COMSOL Multiphysics under various system settings. Our analytical model can enable the optimization of microfluidic transmitters for MC applications in terms of minimizing intersymbol interference and maximizing data transmission rate.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.