Computer Science > Machine Learning
[Submitted on 2 Aug 2023]
Title:EmbeddingTree: Hierarchical Exploration of Entity Features in Embedding
View PDFAbstract:Embedding learning transforms discrete data entities into continuous numerical representations, encoding features/properties of the entities. Despite the outstanding performance reported from different embedding learning algorithms, few efforts were devoted to structurally interpreting how features are encoded in the learned embedding space. This work proposes EmbeddingTree, a hierarchical embedding exploration algorithm that relates the semantics of entity features with the less-interpretable embedding vectors. An interactive visualization tool is also developed based on EmbeddingTree to explore high-dimensional embeddings. The tool helps users discover nuance features of data entities, perform feature denoising/injecting in embedding training, and generate embeddings for unseen entities. We demonstrate the efficacy of EmbeddingTree and our visualization tool through embeddings generated for industry-scale merchant data and the public 30Music listening/playlists dataset.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.