Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 4 Aug 2023]
Title:On the Inherent Anonymity of Gossiping
View PDFAbstract:Detecting the source of a gossip is a critical issue, related to identifying patient zero in an epidemic, or the origin of a rumor in a social network. Although it is widely acknowledged that random and local gossip communications make source identification difficult, there exists no general quantification of the level of anonymity provided to the source. This paper presents a principled method based on $\varepsilon$-differential privacy to analyze the inherent source anonymity of gossiping for a large class of graphs. First, we quantify the fundamental limit of source anonymity any gossip protocol can guarantee in an arbitrary communication graph. In particular, our result indicates that when the graph has poor connectivity, no gossip protocol can guarantee any meaningful level of differential privacy. This prompted us to further analyze graphs with controlled connectivity. We prove on these graphs that a large class of gossip protocols, namely cobra walks, offers tangible differential privacy guarantees to the source. In doing so, we introduce an original proof technique based on the reduction of a gossip protocol to what we call a random walk with probabilistic die out. This proof technique is of independent interest to the gossip community and readily extends to other protocols inherited from the security community, such as the Dandelion protocol. Interestingly, our tight analysis precisely captures the trade-off between dissemination time of a gossip protocol and its source anonymity.
Submission history
From: Anastasiia Kucherenko [view email][v1] Fri, 4 Aug 2023 17:39:42 UTC (279 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.