Quantitative Biology > Neurons and Cognition
[Submitted on 9 Aug 2023]
Title:Analyzing the Effect of Data Impurity on the Detection Performances of Mental Disorders
View PDFAbstract:The primary method for identifying mental disorders automatically has traditionally involved using binary classifiers. These classifiers are trained using behavioral data obtained from an interview setup. In this training process, data from individuals with the specific disorder under consideration are categorized as the positive class, while data from all other participants constitute the negative class. In practice, it is widely recognized that certain mental disorders share similar symptoms, causing the collected behavioral data to encompass a variety of attributes associated with multiple disorders. Consequently, attributes linked to the targeted mental disorder might also be present within the negative class. This data impurity may lead to sub-optimal training of the classifier for a mental disorder of interest. In this study, we investigate this hypothesis in the context of major depressive disorder (MDD) and post-traumatic stress disorder detection (PTSD). The results show that upon removal of such data impurity, MDD and PTSD detection performances are significantly improved.
Current browse context:
q-bio.NC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.