Computer Science > Software Engineering
[Submitted on 10 Aug 2023]
Title:Test Case Minimization with Quantum Annealers
View PDFAbstract:Quantum annealers are specialized quantum computers for solving combinatorial optimization problems using special characteristics of quantum computing (QC), such as superposition, entanglement, and quantum tunneling. Theoretically, quantum annealers can outperform classical computers. However, the currently available quantum annealers are small-scale, i.e., they have limited quantum bits (qubits); hence, they currently cannot demonstrate the quantum advantage. Nonetheless, research is warranted to develop novel mechanisms to formulate combinatorial optimization problems for quantum annealing (QA). However, solving combinatorial problems with QA in software engineering remains unexplored. Toward this end, we propose BootQA, the very first effort at solving the test case minimization (TCM) problem with QA. In BootQA, we provide a novel formulation of TCM for QA, followed by devising a mechanism to incorporate bootstrap sampling to QA to optimize the use of qubits. We also implemented our TCM formulation in three other optimization processes: classical simulated annealing (SA), QA without problem decomposition, and QA with an existing D-Wave problem decomposition strategy, and conducted an empirical evaluation with three real-world TCM datasets. Results show that BootQA outperforms QA without problem decomposition and QA with the existing decomposition strategy in terms of effectiveness. Moreover, BootQA's effectiveness is similar to SA. Finally, BootQA has higher efficiency in terms of time when solving large TCM problems than the other three optimization processes.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.