Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Aug 2023 (v1), last revised 18 Oct 2024 (this version, v3)]
Title:Encode-Store-Retrieve: Augmenting Human Memory through Language-Encoded Egocentric Perception
View PDF HTML (experimental)Abstract:We depend on our own memory to encode, store, and retrieve our experiences. However, memory lapses can occur. One promising avenue for achieving memory augmentation is through the use of augmented reality head-mounted displays to capture and preserve egocentric videos, a practice commonly referred to as lifelogging. However, a significant challenge arises from the sheer volume of video data generated through lifelogging, as the current technology lacks the capability to encode and store such large amounts of data efficiently. Further, retrieving specific information from extensive video archives requires substantial computational power, further complicating the task of quickly accessing desired content. To address these challenges, we propose a memory augmentation agent that involves leveraging natural language encoding for video data and storing them in a vector database. This approach harnesses the power of large vision language models to perform the language encoding process. Additionally, we propose using large language models to facilitate natural language querying. Our agent underwent extensive evaluation using the QA-Ego4D dataset and achieved state-of-the-art results with a BLEU score of 8.3, outperforming conventional machine learning models that scored between 3.4 and 5.8. Additionally, we conducted a user study in which participants interacted with the human memory augmentation agent through episodic memory and open-ended questions. The results of this study show that the agent results in significantly better recall performance on episodic memory tasks compared to human participants. The results also highlight the agent's practical applicability and user acceptance.
Submission history
From: Junxiao Shen Dr [view email][v1] Thu, 10 Aug 2023 18:43:44 UTC (2,167 KB)
[v2] Sat, 5 Oct 2024 06:13:08 UTC (5,903 KB)
[v3] Fri, 18 Oct 2024 07:24:54 UTC (5,900 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.