Computer Science > Computation and Language
[Submitted on 11 Aug 2023]
Title:KETM:A Knowledge-Enhanced Text Matching method
View PDFAbstract:Text matching is the task of matching two texts and determining the relationship between them, which has extensive applications in natural language processing tasks such as reading comprehension, and Question-Answering systems. The mainstream approach is to compute text representations or to interact with the text through attention mechanism, which is effective in text matching tasks. However, the performance of these models is insufficient for texts that require commonsense knowledge-based reasoning. To this end, in this paper, We introduce a new model for text matching called the Knowledge Enhanced Text Matching model (KETM), to enrich contextual representations with real-world common-sense knowledge from external knowledge sources to enhance our model understanding and reasoning. First, we use Wiktionary to retrieve the text word definitions as our external knowledge. Secondly, we feed text and knowledge to the text matching module to extract their feature vectors. The text matching module is used as an interaction module by integrating the encoder layer, the co-attention layer, and the aggregation layer. Specifically, the interaction process is iterated several times to obtain in-depth interaction information and extract the feature vectors of text and knowledge by multi-angle pooling. Then, we fuse text and knowledge using a gating mechanism to learn the ratio of text and knowledge fusion by a neural network that prevents noise generated by knowledge. After that, experimental validation on four datasets are carried out, and the experimental results show that our proposed model performs well on all four datasets, and the performance of our method is improved compared to the base model without adding external knowledge, which validates the effectiveness of our proposed method. The code is available at this https URL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.