Computer Science > Data Structures and Algorithms
[Submitted on 17 Aug 2023]
Title:Computing complexity measures of degenerate graphs
View PDFAbstract:We show that the VC-dimension of a graph can be computed in time $n^{\log d+1} d^{O(d)}$, where $d$ is the degeneracy of the input graph. The core idea of our algorithm is a data structure to efficiently query the number of vertices that see a specific subset of vertices inside of a (small) query set. The construction of this data structure takes time $O(d2^dn)$, afterwards queries can be computed efficiently using fast Möbius inversion.
This data structure turns out to be useful for a range of tasks, especially for finding bipartite patterns in degenerate graphs, and we outline an efficient algorithms for counting the number of times specific patterns occur in a graph. The largest factor in the running time of this algorithm is $O(n^c)$, where $c$ is a parameter of the pattern we call its left covering number.
Concrete applications of this algorithm include counting the number of (non-induced) bicliques in linear time, the number of co-matchings in quadratic time, as well as a constant-factor approximation of the ladder index in linear time.
Finally, we supplement our theoretical results with several implementations and run experiments on more than 200 real-world datasets -- the largest of which has 8 million edges -- where we obtain interesting insights into the VC-dimension of real-world networks.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.