Computer Science > Robotics
[Submitted on 19 Aug 2023]
Title:Learning Soft Robot Dynamics using Differentiable Kalman Filters and Spatio-Temporal Embeddings
View PDFAbstract:This paper introduces a novel approach for modeling the dynamics of soft robots, utilizing a differentiable filter architecture. The proposed approach enables end-to-end training to learn system dynamics, noise characteristics, and temporal behavior of the robot. A novel spatio-temporal embedding process is discussed to handle observations with varying sensor placements and sampling frequencies. The efficacy of this approach is demonstrated on a tensegrity robot arm by learning end-effector dynamics from demonstrations with complex bending motions. The model is proven to be robust against missing modalities, diverse sensor placement, and varying sampling rates. Additionally, the proposed framework is shown to identify physical interactions with humans during motion. The utilization of a differentiable filter presents a novel solution to the difficulties of modeling soft robot dynamics. Our approach shows substantial improvement in accuracy compared to state-of-the-art filtering methods, with at least a 24% reduction in mean absolute error (MAE) observed. Furthermore, the predicted end-effector positions show an average MAE of 25.77mm from the ground truth, highlighting the advantage of our approach. The code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.