Computer Science > Sound
[Submitted on 20 Aug 2023]
Title:Neural Architectures Learning Fourier Transforms, Signal Processing and Much More....
View PDFAbstract:This report will explore and answer fundamental questions about taking Fourier Transforms and tying it with recent advances in AI and neural architecture. One interpretation of the Fourier Transform is decomposing a signal into its constituent components by projecting them onto complex exponentials. Variants exist, such as discrete cosine transform that does not operate on the complex domain and projects an input signal to only cosine functions oscillating at different frequencies. However, this is a fundamental limitation, and it needs to be more suboptimal. The first one is that all kernels are sinusoidal: What if we could have some kernels adapted or learned according to the problem? What if we can use neural architectures for this? We show how one can learn these kernels from scratch for audio signal processing applications. We find that the neural architecture not only learns sinusoidal kernel shapes but discovers all kinds of incredible signal-processing properties. E.g., windowing functions, onset detectors, high pass filters, low pass filters, modulations, etc. Further, upon analysis of the filters, we find that the neural architecture has a comb filter-like structure on top of the learned kernels. Comb filters that allow harmonic frequencies to pass through are one of the core building blocks/types of filters similar to high-pass, low-pass, and band-pass filters of various traditional signal processing algorithms. Further, we can also use the convolution operation with a signal to be learned from scratch, and we will explore papers in the literature that uses this with that robust Transformer architectures. Further, we would also explore making the learned kernel's content adaptive, i.e., learning different kernels for different inputs.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.