Computer Science > Data Structures and Algorithms
[Submitted on 22 Aug 2023 (v1), last revised 12 Feb 2024 (this version, v2)]
Title:Finding Small Complete Subgraphs Efficiently
View PDFAbstract:(I) We revisit the algorithmic problem of finding all triangles in a graph $G=(V,E)$ with $n$ vertices and $m$ edges. According to a result of Chiba and Nishizeki (1985), this task can be achieved by a combinatorial algorithm running in $O(m \alpha) = O(m^{3/2})$ time, where $\alpha= \alpha(G)$ is the graph arboricity. We provide a new very simple combinatorial algorithm for finding all triangles in a graph and show that is amenable to the same running time analysis. We derive these worst-case bounds from first principles and with very simple proofs that do not rely on classic results due to Nash-Williams from the 1960s.
(II) We extend our arguments to the problem of finding all small complete subgraphs of a given fixed size. We show that the dependency on $m$ and $\alpha$ in the running time $O(\alpha^{\ell-2} \cdot m)$ of the algorithm of Chiba and Nishizeki for listing all copies of $K_\ell$, where $\ell \geq 3$, is asymptotically tight.
(III) We give improved arboricity-sensitive running times for counting and/or detection of copies of $K_\ell$, for small $\ell \geq 4$. A key ingredient in our algorithms is, once again, the algorithm of Chiba and Nishizeki. Our new algorithms are faster than all previous algorithms in certain high-range arboricity intervals for every $\ell \geq 7$.
Submission history
From: Adrian Dumitrescu [view email][v1] Tue, 22 Aug 2023 03:03:16 UTC (19 KB)
[v2] Mon, 12 Feb 2024 02:34:50 UTC (20 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.