Computer Science > Data Structures and Algorithms
[Submitted on 24 Aug 2023 (v1), last revised 9 Nov 2023 (this version, v2)]
Title:Linear-Sized Spectral Sparsifiers and the Kadison-Singer Problem
View PDFAbstract:The Kadison-Singer Conjecture, as proved by Marcus, Spielman, and Srivastava (MSS) [Ann. Math. 182, 327-350 (2015)], has been informally thought of as a strengthening of Batson, Spielman, and Srivastava's theorem that every undirected graph has a linear-sized spectral sparsifier [SICOMP 41, 1704-1721 (2012)]. We formalize this intuition by using a corollary of the MSS result to derive the existence of spectral sparsifiers with a number of edges linear in their number of vertices for all undirected, weighted graphs. The proof consists of two steps. First, following a suggestion of Srivastava [Asia Pac. Math. Newsl. 3, 15-20 (2013)], we show the result in the special case of graphs with bounded leverage scores by repeatedly applying the MSS corollary to partition the graph, while maintaining an appropriate bound on the leverage scores of each subgraph. Then, we extend to the general case by constructing a recursive algorithm that repeatedly (i) divides edges with high leverage scores into multiple parallel edges and (ii) uses the bounded leverage score case to sparsify the resulting graph.
Submission history
From: Phevos Paschalidis [view email][v1] Thu, 24 Aug 2023 00:49:59 UTC (19 KB)
[v2] Thu, 9 Nov 2023 19:12:13 UTC (23 KB)
Current browse context:
cs.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.