Computer Science > Machine Learning
[Submitted on 27 Aug 2023]
Title:Hybrid Transformer-RNN Architecture for Household Occupancy Detection Using Low-Resolution Smart Meter Data
View PDFAbstract:Residential occupancy detection has become an enabling technology in today's urbanized world for various smart home applications, such as building automation, energy management, and improved security and comfort. Digitalization of the energy system provides smart meter data that can be used for occupancy detection in a non-intrusive manner without causing concerns regarding privacy and data security. In particular, deep learning techniques make it possible to infer occupancy from low-resolution smart meter data, such that the need for accurate occupancy detection with privacy preservation can be achieved. Our work is thus motivated to develop a privacy-aware and effective model for residential occupancy detection in contemporary living environments. Our model aims to leverage the advantages of both recurrent neural networks (RNNs), which are adept at capturing local temporal dependencies, and transformers, which are effective at handling global temporal dependencies. Our designed hybrid transformer-RNN model detects residential occupancy using hourly smart meter data, achieving an accuracy of nearly 92\% across households with diverse profiles. We validate the effectiveness of our method using a publicly accessible dataset and demonstrate its performance by comparing it with state-of-the-art models, including attention-based occupancy detection methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.