Computer Science > Computer Vision and Pattern Recognition
[Submitted on 28 Aug 2023]
Title:RobustCLEVR: A Benchmark and Framework for Evaluating Robustness in Object-centric Learning
View PDFAbstract:Object-centric representation learning offers the potential to overcome limitations of image-level representations by explicitly parsing image scenes into their constituent components. While image-level representations typically lack robustness to natural image corruptions, the robustness of object-centric methods remains largely untested. To address this gap, we present the RobustCLEVR benchmark dataset and evaluation framework. Our framework takes a novel approach to evaluating robustness by enabling the specification of causal dependencies in the image generation process grounded in expert knowledge and capable of producing a wide range of image corruptions unattainable in existing robustness evaluations. Using our framework, we define several causal models of the image corruption process which explicitly encode assumptions about the causal relationships and distributions of each corruption type. We generate dataset variants for each causal model on which we evaluate state-of-the-art object-centric methods. Overall, we find that object-centric methods are not inherently robust to image corruptions. Our causal evaluation approach exposes model sensitivities not observed using conventional evaluation processes, yielding greater insight into robustness differences across algorithms. Lastly, while conventional robustness evaluations view corruptions as out-of-distribution, we use our causal framework to show that even training on in-distribution image corruptions does not guarantee increased model robustness. This work provides a step towards more concrete and substantiated understanding of model performance and deterioration under complex corruption processes of the real-world.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.