Computer Science > Machine Learning
[Submitted on 29 Aug 2023]
Title:Advancing Adversarial Robustness Through Adversarial Logit Update
View PDFAbstract:Deep Neural Networks are susceptible to adversarial perturbations. Adversarial training and adversarial purification are among the most widely recognized defense strategies. Although these methods have different underlying logic, both rely on absolute logit values to generate label predictions. In this study, we theoretically analyze the logit difference around successful adversarial attacks from a theoretical point of view and propose a new principle, namely Adversarial Logit Update (ALU), to infer adversarial sample's labels. Based on ALU, we introduce a new classification paradigm that utilizes pre- and post-purification logit differences for model's adversarial robustness boost. Without requiring adversarial or additional data for model training, our clean data synthesis model can be easily applied to various pre-trained models for both adversarial sample detection and ALU-based data classification. Extensive experiments on both CIFAR-10, CIFAR-100, and tiny-ImageNet datasets show that even with simple components, the proposed solution achieves superior robustness performance compared to state-of-the-art methods against a wide range of adversarial attacks. Our python implementation is submitted in our Supplementary document and will be published upon the paper's acceptance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.