Computer Science > Computation and Language
[Submitted on 29 Aug 2023]
Title:Benchmarking the Generation of Fact Checking Explanations
View PDFAbstract:Fighting misinformation is a challenging, yet crucial, task. Despite the growing number of experts being involved in manual fact-checking, this activity is time-consuming and cannot keep up with the ever-increasing amount of Fake News produced daily. Hence, automating this process is necessary to help curb misinformation. Thus far, researchers have mainly focused on claim veracity classification. In this paper, instead, we address the generation of justifications (textual explanation of why a claim is classified as either true or false) and benchmark it with novel datasets and advanced baselines. In particular, we focus on summarization approaches over unstructured knowledge (i.e. news articles) and we experiment with several extractive and abstractive strategies. We employed two datasets with different styles and structures, in order to assess the generalizability of our findings. Results show that in justification production summarization benefits from the claim information, and, in particular, that a claim-driven extractive step improves abstractive summarization performances. Finally, we show that although cross-dataset experiments suffer from performance degradation, a unique model trained on a combination of the two datasets is able to retain style information in an efficient manner.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.