Computer Science > Computer Vision and Pattern Recognition
[Submitted on 29 Aug 2023]
Title:Enhancing OCR Performance through Post-OCR Models: Adopting Glyph Embedding for Improved Correction
View PDFAbstract:The study investigates the potential of post-OCR models to overcome limitations in OCR models and explores the impact of incorporating glyph embedding on post-OCR correction performance. In this study, we have developed our own post-OCR correction model. The novelty of our approach lies in embedding the OCR output using CharBERT and our unique embedding technique, capturing the visual characteristics of characters. Our findings show that post-OCR correction effectively addresses deficiencies in inferior OCR models, and glyph embedding enables the model to achieve superior results, including the ability to correct individual words.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.