Computer Science > Computer Vision and Pattern Recognition
[Submitted on 31 Aug 2023]
Title:Separate and Locate: Rethink the Text in Text-based Visual Question Answering
View PDFAbstract:Text-based Visual Question Answering (TextVQA) aims at answering questions about the text in images. Most works in this field focus on designing network structures or pre-training tasks. All these methods list the OCR texts in reading order (from left to right and top to bottom) to form a sequence, which is treated as a natural language ``sentence''. However, they ignore the fact that most OCR words in the TextVQA task do not have a semantical contextual relationship. In addition, these approaches use 1-D position embedding to construct the spatial relation between OCR tokens sequentially, which is not reasonable. The 1-D position embedding can only represent the left-right sequence relationship between words in a sentence, but not the complex spatial position relationship. To tackle these problems, we propose a novel method named Separate and Locate (SaL) that explores text contextual cues and designs spatial position embedding to construct spatial relations between OCR texts. Specifically, we propose a Text Semantic Separate (TSS) module that helps the model recognize whether words have semantic contextual relations. Then, we introduce a Spatial Circle Position (SCP) module that helps the model better construct and reason the spatial position relationships between OCR texts. Our SaL model outperforms the baseline model by 4.44% and 3.96% accuracy on TextVQA and ST-VQA datasets. Compared with the pre-training state-of-the-art method pre-trained on 64 million pre-training samples, our method, without any pre-training tasks, still achieves 2.68% and 2.52% accuracy improvement on TextVQA and ST-VQA. Our code and models will be released at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.