Computer Science > Computer Vision and Pattern Recognition
[Submitted on 31 Aug 2023 (v1), last revised 12 Dec 2023 (this version, v3)]
Title:GHuNeRF: Generalizable Human NeRF from a Monocular Video
View PDF HTML (experimental)Abstract:In this paper, we tackle the challenging task of learning a generalizable human NeRF model from a monocular video. Although existing generalizable human NeRFs have achieved impressive results, they require muti-view images or videos which might not be always available. On the other hand, some works on free-viewpoint rendering of human from monocular videos cannot be generalized to unseen identities. In view of these limitations, we propose GHuNeRF to learn a generalizable human NeRF model from a monocular video of the human performer. We first introduce a visibility-aware aggregation scheme to compute vertex-wise features, which is used to construct a 3D feature volume. The feature volume can only represent the overall geometry of the human performer with insufficient accuracy due to the limited resolution. To solve this, we further enhance the volume feature with temporally aligned point-wise features using an attention mechanism. Finally, the enhanced feature is used for predicting density and color for each sampled point. A surface-guided sampling strategy is also adopted to improve the efficiency for both training and inference. We validate our approach on the widely-used ZJU-MoCap dataset, where we achieve comparable performance with existing multi-view video based approaches. We also test on the monocular People-Snapshot dataset and achieve better performance than existing works when only monocular video is used. Our code is available at the project website.
Submission history
From: Chen Li [view email][v1] Thu, 31 Aug 2023 09:19:06 UTC (11,892 KB)
[v2] Sun, 3 Sep 2023 02:39:00 UTC (11,892 KB)
[v3] Tue, 12 Dec 2023 07:50:06 UTC (11,892 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.