Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Sep 2023]
Title:AdvMono3D: Advanced Monocular 3D Object Detection with Depth-Aware Robust Adversarial Training
View PDFAbstract:Monocular 3D object detection plays a pivotal role in the field of autonomous driving and numerous deep learning-based methods have made significant breakthroughs in this area. Despite the advancements in detection accuracy and efficiency, these models tend to fail when faced with such attacks, rendering them ineffective. Therefore, bolstering the adversarial robustness of 3D detection models has become a crucial issue that demands immediate attention and innovative solutions. To mitigate this issue, we propose a depth-aware robust adversarial training method for monocular 3D object detection, dubbed DART3D. Specifically, we first design an adversarial attack that iteratively degrades the 2D and 3D perception capabilities of 3D object detection models(IDP), serves as the foundation for our subsequent defense mechanism. In response to this attack, we propose an uncertainty-based residual learning method for adversarial training. Our adversarial training approach capitalizes on the inherent uncertainty, enabling the model to significantly improve its robustness against adversarial attacks. We conducted extensive experiments on the KITTI 3D datasets, demonstrating that DART3D surpasses direct adversarial training (the most popular approach) under attacks in 3D object detection $AP_{R40}$ of car category for the Easy, Moderate, and Hard settings, with improvements of 4.415%, 4.112%, and 3.195%, respectively.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.