Computer Science > Formal Languages and Automata Theory
[Submitted on 6 Sep 2023]
Title:Once-Marking and Always-Marking 1-Limited Automata
View PDFAbstract:Single-tape nondeterministic Turing machines that are allowed to replace the symbol in each tape cell only when it is scanned for the first time are also known as 1-limited automata. These devices characterize, exactly as finite automata, the class of regular languages. However, they can be extremely more succinct. Indeed, in the worst case the size gap from 1-limited automata to one-way deterministic finite automata is double exponential.
Here we introduce two restricted versions of 1-limited automata, once-marking 1-limited automata and always-marking 1-limited automata, and study their descriptional complexity. We prove that once-marking 1-limited automata still exhibit a double exponential size gap to one-way deterministic finite automata. However, their deterministic restriction is polynomially related in size to two-way deterministic finite automata, in contrast to deterministic 1-limited automata, whose equivalent two-way deterministic finite automata in the worst case are exponentially larger. For always-marking 1-limited automata, we prove that the size gap to one-way deterministic finite automata is only a single exponential. The gap remains exponential even in the case the given machine is deterministic.
We obtain other size relationships between different variants of these machines and finite automata and we present some problems that deserve investigation.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Wed, 6 Sep 2023 06:20:24 UTC (21 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.