Quantum Physics
[Submitted on 6 Sep 2023 (v1), last revised 10 Feb 2025 (this version, v2)]
Title:Quantum Two-Way Protocol Beyond Superdense Coding: Joint Transfer of Data and Entanglement
View PDFAbstract:In this article, we introduce a generalization of one-way superdense coding to two-way communication protocols for transmitting classical bits by using entangled quantum pairs. The proposed protocol jointly addresses the provision of entangled pairs and superdense coding, introducing an integrated approach for managing entanglement within the communication protocol. To assess the performance of the proposed protocol, we consider its data rate and resource usage, and we analyze this both in an ideal setting with no decoherence and in a more realistic setting where decoherence must be taken into account. In the ideal case, the proposal offers a 50% increase in both data rate and resource usage efficiency compared to conventional protocols. Even when decoherence is taken into consideration, the quantum protocol performs better as long as the decoherence time is not extremely short. Finally, we present the results of implementing the protocol in a computer simulation based on the NetSquid framework. We compare the simulation results with the theoretical values.
Submission history
From: René Bødker Christensen [view email][v1] Wed, 6 Sep 2023 08:48:07 UTC (72 KB)
[v2] Mon, 10 Feb 2025 09:40:21 UTC (698 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.