Computer Science > Machine Learning
[Submitted on 11 Sep 2023 (v1), last revised 30 Jan 2025 (this version, v2)]
Title:Enhancing Hyperedge Prediction with Context-Aware Self-Supervised Learning
View PDF HTML (experimental)Abstract:Hypergraphs can naturally model group-wise relations (e.g., a group of users who co-purchase an item) as hyperedges. Hyperedge prediction is to predict future or unobserved hyperedges, which is a fundamental task in many real-world applications (e.g., group recommendation). Despite the recent breakthrough of hyperedge prediction methods, the following challenges have been rarely studied: (C1) How to aggregate the nodes in each hyperedge candidate for accurate hyperedge prediction? and (C2) How to mitigate the inherent data sparsity problem in hyperedge prediction? To tackle both challenges together, in this paper, we propose a novel hyperedge prediction framework (CASH) that employs (1) context-aware node aggregation to precisely capture complex relations among nodes in each hyperedge for (C1) and (2) self-supervised contrastive learning in the context of hyperedge prediction to enhance hypergraph representations for (C2). Furthermore, as for (C2), we propose a hyperedge-aware augmentation method to fully exploit the latent semantics behind the original hypergraph and consider both node-level and group-level contrasts (i.e., dual contrasts) for better node and hyperedge representations. Extensive experiments on six real-world hypergraphs reveal that CASH consistently outperforms all competing methods in terms of the accuracy in hyperedge prediction and each of the proposed strategies is effective in improving the model accuracy of CASH. For the detailed information of CASH, we provide the code and datasets at: this https URL.
Submission history
From: Yunyong Ko [view email][v1] Mon, 11 Sep 2023 20:06:00 UTC (1,807 KB)
[v2] Thu, 30 Jan 2025 08:17:51 UTC (2,104 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.