Physics > Optics
[Submitted on 12 Sep 2023]
Title:Non-reciprocal absorption and zero reflection in physically separated dual photonic resonators by traveling-wave-induced indirect coupling
View PDFAbstract:We experimentally explored novel behaviors of non-reciprocal absorption and almost zero reflection in a dual photon resonator system, which is physically separated and composed of two inverted split ring resonators (ISRRs) with varying inter-distances. We also found that an electromagnetically-induced-transparency (EIT)-like peak at a specific inter-distance of d = 18 mm through traveling waves flowing along a shared microstrip line to which the dual ISRRs are dissipatively coupled. With the aid of CST-simulations and analytical modeling, we found that destructive and/or constructive interferences in traveling waves, indirectly coupled to each ISRR, result in a traveling-wave-induced transparency peak within a narrow window. Furthermore, we observed not only strong non-reciprocal responses of reflectivity and absorptivity at individual inter-distances exactly at the corresponding EIT-like peak positions, but also nearly zero reflection and almost perfect absorption for a specific case of d = 20 mm. Finally, the unidirectional absorptions with zero reflection at d = 20 mm are found to be ascribed to a non-Hermitian origin. This work not only provides a better understanding of traveling-wave-induced indirect coupling between two photonic resonators without magnetic coupling, but also suggests potential implications for the resulting non-reciprocal behaviors of absorption and reflection in microwave circuits and quantum information devices.
Current browse context:
physics.optics
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.