Mathematics > Dynamical Systems
[Submitted on 13 Sep 2023]
Title:A Robust SINDy Approach by Combining Neural Networks and an Integral Form
View PDFAbstract:The discovery of governing equations from data has been an active field of research for decades. One widely used methodology for this purpose is sparse regression for nonlinear dynamics, known as SINDy. Despite several attempts, noisy and scarce data still pose a severe challenge to the success of the SINDy approach. In this work, we discuss a robust method to discover nonlinear governing equations from noisy and scarce data. To do this, we make use of neural networks to learn an implicit representation based on measurement data so that not only it produces the output in the vicinity of the measurements but also the time-evolution of output can be described by a dynamical system. Additionally, we learn such a dynamic system in the spirit of the SINDy framework. Leveraging the implicit representation using neural networks, we obtain the derivative information -- required for SINDy -- using an automatic differentiation tool. To enhance the robustness of our methodology, we further incorporate an integral condition on the output of the implicit networks. Furthermore, we extend our methodology to handle data collected from multiple initial conditions. We demonstrate the efficiency of the proposed methodology to discover governing equations under noisy and scarce data regimes by means of several examples and compare its performance with existing methods.
Current browse context:
math.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.