Computer Science > Robotics
[Submitted on 15 Sep 2023 (v1), last revised 18 May 2024 (this version, v3)]
Title:OccupancyDETR: Using DETR for Mixed Dense-sparse 3D Occupancy Prediction
View PDF HTML (experimental)Abstract:Visual-based 3D semantic occupancy perception is a key technology for robotics, including autonomous vehicles, offering an enhanced understanding of the environment by 3D. This approach, however, typically requires more computational resources than BEV or 2D methods. We propose a novel 3D semantic occupancy perception method, OccupancyDETR, which utilizes a DETR-like object detection, a mixed dense-sparse 3D occupancy decoder. Our approach distinguishes between foreground and background within a scene. Initially, foreground objects are detected using the DETR-like object detection. Subsequently, queries for both foreground and background objects are fed into the mixed dense-sparse 3D occupancy decoder, performing upsampling in dense and sparse methods, respectively. Finally, a MaskFormer is utilized to infer the semantics of the background voxels. Our approach strikes a balance between efficiency and accuracy, achieving faster inference times, lower resource consumption, and improved performance for small object detection. We demonstrate the effectiveness of our proposed method on the SemanticKITTI dataset, showcasing an mIoU of 14 and a processing speed of 10 FPS, thereby presenting a promising solution for real-time 3D semantic occupancy perception.
Submission history
From: Yupeng Jia [view email][v1] Fri, 15 Sep 2023 16:06:23 UTC (14,577 KB)
[v2] Fri, 22 Sep 2023 13:52:33 UTC (14,579 KB)
[v3] Sat, 18 May 2024 13:41:35 UTC (3,250 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.