Electrical Engineering and Systems Science > Signal Processing
[Submitted on 11 Sep 2023]
Title:Balance Measures Derived from Insole Sensor Differentiate Prodromal Dementia with Lewy Bodies
View PDFAbstract:Dementia with Lewy bodies is the second most common type of neurodegenerative dementia, and identification at the prodromal stage$-$i.e., mild cognitive impairment due to Lewy bodies (MCI-LB)$-$is important for providing appropriate care. However, MCI-LB is often underrecognized because of its diversity in clinical manifestations and similarities with other conditions such as mild cognitive impairment due to Alzheimer's disease (MCI-AD). In this study, we propose a machine learning-based automatic pipeline that helps identify MCI-LB by exploiting balance measures acquired with an insole sensor during a 30-s standing task. An experiment with 98 participants (14 MCI-LB, 38 MCI-AD, 46 cognitively normal) showed that the resultant models could discriminate MCI-LB from the other groups with up to 78.0% accuracy (AUC: 0.681), which was 6.8% better than the accuracy of a reference model based on demographic and clinical neuropsychological measures. Our findings may open up a new approach for timely identification of MCI-LB, enabling better care for patients.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.