Computer Science > Robotics
[Submitted on 16 Sep 2023]
Title:Kinetostatic Path Planning for Continuum Robots By Sampling on Implicit Manifold
View PDFAbstract:Continuum robots (CR) offer excellent dexterity and compliance in contrast to rigid-link robots, making them suitable for navigating through, and interacting with, confined environments. However, the study of path planning for CRs while considering external elastic contact is limited. The challenge lies in the fact that CRs can have multiple possible configurations when in contact, rendering the forward kinematics not well-defined, and characterizing the set of feasible robot configurations as non-trivial. In this paper, we propose to solve this problem by performing quasi-static path planning on an implicit manifold. We model elastic obstacles as external potential fields and formulate the robot statics in the potential field as the extremal trajectory of an optimal control problem obtained by the first-order variational principle. We show that the set of stable robot configurations is a smooth manifold diffeomorphic to a submanifold embedded in the product space of the CR actuation and base internal wrench. We then propose to perform path planning on this manifold using AtlasRRT*, a sampling-based planner dedicated to planning on implicit manifolds. Simulations in different operation scenarios were conducted and the results show that the proposed planner outperforms Euclidean space planners in terms of success rate and computational efficiency.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.