Computer Science > Computation and Language
[Submitted on 18 Sep 2023]
Title:Search and Learning for Unsupervised Text Generation
View PDFAbstract:With the advances of deep learning techniques, text generation is attracting increasing interest in the artificial intelligence (AI) community, because of its wide applications and because it is an essential component of AI. Traditional text generation systems are trained in a supervised way, requiring massive labeled parallel corpora. In this paper, I will introduce our recent work on search and learning approaches to unsupervised text generation, where a heuristic objective function estimates the quality of a candidate sentence, and discrete search algorithms generate a sentence by maximizing the search objective. A machine learning model further learns from the search results to smooth out noise and improve efficiency. Our approach is important to the industry for building minimal viable products for a new task; it also has high social impacts for saving human annotation labor and for processing low-resource languages.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.