Computer Science > Social and Information Networks
[Submitted on 19 Sep 2023]
Title:Gaining a better understanding of online polarization by approaching it as a dynamic process
View PDFAbstract:Polarization is often a clich{é}, its conceptualization remains approximate and no consensus has been reached so far. Often simply seen as an inevitable result of the use of social networks, polarization nevertheless remains a complex social phenomenon that must be placed in a wider context. To contribute to a better understanding of polarization, we approach it as an evolving process, drawing on a dual expertise in political and data sciences. We compare the polarization process between one mature debate (COVID-19 vaccine) and one emerging debate (Ukraine conflict) at the time of data collection. Both debates are studied on Twitter users, a highly politicized population, and on the French population to provide key elements beyond the traditional US context. This unprecedented analysis confirms that polarization varies over time, through a succession of specific periods, whose existence and duration depend on the maturity of the debate. Importantly, we highlight that polarization is paced by context-related events. Bearing this in mind, we pave the way for a new generation of personalized depolarization strategies, adapted to the context and maturity of debates.
Submission history
From: Celina Treuillier [view email] [via CCSD proxy][v1] Tue, 19 Sep 2023 08:36:56 UTC (1,726 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.