Statistics > Computation
[Submitted on 19 Sep 2023]
Title:Unbiased Parameter Estimation for Partially Observed Diffusions
View PDFAbstract:In this article we consider the estimation of static parameters for partially observed diffusion process with discrete-time observations over a fixed time interval. In particular, we assume that one must time-discretize the partially observed diffusion process and work with the model with bias and consider maximizing the resulting log-likelihood. Using a novel double randomization scheme, based upon Markovian stochastic approximation we develop a new method to unbiasedly estimate the static parameters, that is, to obtain the maximum likelihood estimator with no time discretization bias. Under assumptions we prove that our estimator is unbiased and investigate the method in several numerical examples, showing that it can empirically out-perform existing unbiased methodology.
Current browse context:
stat.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.