Computer Science > Robotics
[Submitted on 19 Sep 2023]
Title:Heuristic Search for Path Finding with Refuelling
View PDFAbstract:This paper considers a generalization of the Path Finding (PF) with refueling constraints referred to as the Refuelling Path Finding (RF-PF) problem. Just like PF, the RF-PF problem is defined over a graph, where vertices are gas stations with known fuel prices, and edge costs depend on the gas consumption between the corresponding vertices. RF-PF seeks a minimum-cost path from the start to the goal vertex for a robot with a limited gas tank and a limited number of refuelling stops. While RF-PF is polynomial-time solvable, it remains a challenge to quickly compute an optimal solution in practice since the robot needs to simultaneously determine the path, where to make the stops, and the amount to refuel at each stop. This paper develops a heuristic search algorithm called Refuel A* (RF-A* ) that iteratively constructs partial solution paths from the start to the goal guided by a heuristic function while leveraging dominance rules for state pruning during planning. RF-A* is guaranteed to find an optimal solution and runs more than an order of magnitude faster than the existing state of the art (a polynomial time algorithm) when tested in large city maps with hundreds of gas stations.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.