Mathematics > Numerical Analysis
[Submitted on 20 Sep 2023]
Title:Preconditioning for time-harmonic Maxwell's equations using the Laguerre transform
View PDFAbstract:A method of numerically solving the Maxwell equations is considered for modeling harmonic electromagnetic fields. The vector finite element method makes it possible to obtain a physically consistent discretization of the differential equations. However, solving large systems of linear algebraic equations with indefinite ill-conditioned matrices is a challenge. The high order of the matrices limits the capabilities of the Gaussian method to solve such systems, since this requires large RAM and much calculation. To reduce these requirements, an iterative preconditioned algorithm based on integral Laguerre transform in time is used. This approach allows using multigrid algorithms and, as a result, needs less RAM compared to the direct methods of solving systems of linear algebraic equations.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.