Computer Science > Programming Languages
[Submitted on 21 Sep 2023]
Title:Design of Reversible Computing Systems; Large Logic, Languages, and Circuits
View PDFAbstract:This PhD dissertation investigates garbage-free reversible computing systems from abstract design to physical gate-level implementation. Designed in reversible logic, we propose a ripple-block carry adder and work towards a reversible circuit for general multiplication. At a higher-level, abstract designs are proposed for reversible systems, such as a small von Neumann architecture that can execute programs written in a simple reversible two-address instruction set, a novel reversible arithmetic logic unit, and a linear cosine transform. To aid the design of reversible logic circuits we have designed two reversible functional hardware description languages: a linear-typed higher-level language and a gate-level point-free combinator language. We suggest a garbage-free design flow, where circuits are described in the higher-level language and then translated to the combinator language, from which methods to place-and-route of CMOS gates can be applied. We have also made standard cell layouts of the reversible gates in complementary pass-gate CMOS logic and used these to fabricate the ALU design. In total, this dissertation has shown that it is possible to design non-trivial reversible computing systems without garbage and that support from languages (computer aided design) can make this process easier.
Submission history
From: Michael Kirkedal Thomsen [view email][v1] Thu, 21 Sep 2023 07:13:09 UTC (393 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.