Computer Science > Neural and Evolutionary Computing
[Submitted on 21 Sep 2023 (v1), last revised 4 Jun 2024 (this version, v2)]
Title:Robust Energy Consumption Prediction with a Missing Value-Resilient Metaheuristic-based Neural Network in Mobile App Development
View PDF HTML (experimental)Abstract:Energy consumption is a fundamental concern in mobile application development, bearing substantial significance for both developers and end-users. Main objective of this research is to propose a novel neural network-based framework, enhanced by a metaheuristic approach, to achieve robust energy prediction in the context of mobile app development. The metaheuristic approach here aims to achieve two goals: 1) identifying suitable learning algorithms and their corresponding hyperparameters, and 2) determining the optimal number of layers and neurons within each layer. Moreover, due to limitations in accessing certain aspects of a mobile phone, there might be missing data in the data set, and the proposed framework can handle this. In addition, we conducted an optimal algorithm selection strategy, employing 13 base and advanced metaheuristic algorithms, to identify the best algorithm based on accuracy and resistance to missing values. The representation in our proposed metaheuristic algorithm is variable-size, meaning that the length of the candidate solutions changes over time. We compared the algorithms based on the architecture found by each algorithm at different levels of missing values, accuracy, F-measure, and stability analysis. Additionally, we conducted a Wilcoxon signed-rank test for statistical comparison of the results. The extensive experiments show that our proposed approach significantly improves energy consumption prediction. Particularly, the JADE algorithm, a variant of Differential Evolution (DE), DE, and the Covariance Matrix Adaptation Evolution Strategy deliver superior results under various conditions and across different missing value levels.
Submission history
From: Seyed Jalaleddin Mousavirad [view email][v1] Thu, 21 Sep 2023 21:01:43 UTC (121 KB)
[v2] Tue, 4 Jun 2024 09:14:20 UTC (143 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.