Mathematics > Metric Geometry
[Submitted on 22 Sep 2023]
Title:On Axial Symmetry in Convex Bodies
View PDFAbstract:For a two-dimensional convex body, the Kovner-Besicovitch measure of symmetry is defined as the volume ratio of the largest centrally symmetric body contained inside the body to the original body. A classical result states that the Kovner-Besicovitch measure is at least $2/3$ for every convex body and equals $2/3$ for triangles. Lassak showed that an alternative measure of symmetry, i.e., symmetry about a line (axiality) has a value of at least $2/3$ for every convex body. However, the smallest known value of the axiality of a convex body is around $0.81584$, achieved by a convex quadrilateral. We show that every plane convex body has axiality at least $\frac{2}{41}(10 + 3 \sqrt{2}) \approx 0.69476$, thereby establishing a separation with the central symmetry measure. Moreover, we find a family of convex quadrilaterals with axiality approaching $\frac{1}{3}(\sqrt{2}+1) \approx 0.80474$. We also establish improved bounds for a ``folding" measure of axial symmetry for plane convex bodies. Finally, we establish improved bounds for a generalization of axiality to high-dimensional convex bodies.
Current browse context:
math.MG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.