Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 Sep 2023 (v1), last revised 19 Feb 2025 (this version, v4)]
Title:Bridging Sensor Gaps via Attention Gated Tuning for Hyperspectral Image Classification
View PDF HTML (experimental)Abstract:Data-hungry HSI classification methods require high-quality labeled HSIs, which are often costly to obtain. This characteristic limits the performance potential of data-driven methods when dealing with limited annotated samples. Bridging the domain gap between data acquired from different sensors allows us to utilize abundant labeled data across sensors to break this bottleneck. In this paper, we propose a novel Attention-Gated Tuning (AGT) strategy and a triplet-structured transformer model, Tri-Former, to address this issue. The AGT strategy serves as a bridge, allowing us to leverage existing labeled HSI datasets, even RGB datasets to enhance the performance on new HSI datasets with limited samples. Instead of inserting additional parameters inside the basic model, we train a lightweight auxiliary branch that takes intermediate features as input from the basic model and makes predictions. The proposed AGT resolves conflicts between heterogeneous and even cross-modal data by suppressing the disturbing information and enhances the useful information through a soft gate. Additionally, we introduce Tri-Former, a triplet-structured transformer with a spectral-spatial separation design that enhances parameter utilization and computational efficiency, enabling easier and flexible fine-tuning. Comparison experiments conducted on three representative HSI datasets captured by different sensors demonstrate the proposed Tri-Former achieves better performance compared to several state-of-the-art methods. Homologous, heterologous and cross-modal tuning experiments verified the effectiveness of the proposed AGT. Code has been released at: \href{this https URL}{this https URL}.
Submission history
From: Xizhe Xue [view email][v1] Fri, 22 Sep 2023 13:39:24 UTC (4,532 KB)
[v2] Thu, 18 Jul 2024 08:45:12 UTC (19,102 KB)
[v3] Thu, 25 Jul 2024 08:32:15 UTC (19,104 KB)
[v4] Wed, 19 Feb 2025 18:59:01 UTC (17,584 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.