Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 Sep 2023]
Title:Poster: Self-Supervised Quantization-Aware Knowledge Distillation
View PDFAbstract:Quantization-aware training (QAT) starts with a pre-trained full-precision model and performs quantization during retraining. However, existing QAT works require supervision from the labels and they suffer from accuracy loss due to reduced precision. To address these limitations, this paper proposes a novel Self-Supervised Quantization-Aware Knowledge Distillation framework (SQAKD). SQAKD first unifies the forward and backward dynamics of various quantization functions and then reframes QAT as a co-optimization problem that simultaneously minimizes the KL-Loss and the discretization error, in a self-supervised manner. The evaluation shows that SQAKD significantly improves the performance of various state-of-the-art QAT works. SQAKD establishes stronger baselines and does not require extensive labeled training data, potentially making state-of-the-art QAT research more accessible.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.