Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 29 Sep 2023]
Title:Grand Perspective: Load Shedding in Distributed CEP Applications
View PDFAbstract:In distributed Complex Event Processing (CEP) applications with high load but limited resources, bottleneck operators in the operator graph can significantly slow down processing of event streams, thus compelling the need to shed load. A high-quality load shedding strategy that resolves the bottleneck with high output quality evaluates each event's importance with regards to the application's final output and drops less important events from the event stream for the benefit of important ones. So far, no solution has been proposed that is able to permit good load shedding in distributed, multi-operator CEP applications. On one hand, shedding strategies have been proposed for single-operator CEP applications that can measure an event's importance immediately at the bottleneck operator, only, and thereby ignore the effect of other streams in the application on an event's importance. On the other hand, shedding strategies have been proposed for applications with multiple operators from the area of stream processing that provide a fixed selectivity which is not given in the conditional CEP operators. We, therefore, propose a load-shedding solution for distributed CEP applications that maximizes the application's final output and ensures timely processing of important events by using a set of CEP-tailored selectivity functions and a linear program, which is an abstraction of the CEP application. Moreover, our solution ensures a quality optimal shedder configuration even in the presence of dynamically changing conditions. With the help of extensive evaluations on both synthetic and real data, we show that our solution successfully resolves overload at bottleneck operators and at the same time maximizes the quality of the application's output.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.