Computer Science > Computation and Language
[Submitted on 13 Oct 2023]
Title:PerturbScore: Connecting Discrete and Continuous Perturbations in NLP
View PDFAbstract:With the rapid development of neural network applications in NLP, model robustness problem is gaining more attention. Different from computer vision, the discrete nature of texts makes it more challenging to explore robustness in NLP. Therefore, in this paper, we aim to connect discrete perturbations with continuous perturbations, therefore we can use such connections as a bridge to help understand discrete perturbations in NLP models. Specifically, we first explore how to connect and measure the correlation between discrete perturbations and continuous perturbations. Then we design a regression task as a PerturbScore to learn the correlation automatically. Through experimental results, we find that we can build a connection between discrete and continuous perturbations and use the proposed PerturbScore to learn such correlation, surpassing previous methods used in discrete perturbation measuring. Further, the proposed PerturbScore can be well generalized to different datasets, perturbation methods, indicating that we can use it as a powerful tool to study model robustness in NLP.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.