Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Oct 2023 (v1), last revised 25 Dec 2023 (this version, v3)]
Title:Towards Generalizable Multi-Camera 3D Object Detection via Perspective Debiasing
View PDF HTML (experimental)Abstract:Detecting objects in 3D space using multiple cameras, known as Multi-Camera 3D Object Detection (MC3D-Det), has gained prominence with the advent of bird's-eye view (BEV) approaches. However, these methods often struggle when faced with unfamiliar testing environments due to the lack of diverse training data encompassing various viewpoints and environments. To address this, we propose a novel method that aligns 3D detection with 2D camera plane results, ensuring consistent and accurate detections. Our framework, anchored in perspective debiasing, helps the learning of features resilient to domain shifts. In our approach, we render diverse view maps from BEV features and rectify the perspective bias of these maps, leveraging implicit foreground volumes to bridge the camera and BEV planes. This two-step process promotes the learning of perspective- and context-independent features, crucial for accurate object detection across varying viewpoints, camera parameters, and environmental conditions. Notably, our model-agnostic approach preserves the original network structure without incurring additional inference costs, facilitating seamless integration across various models and simplifying deployment. Furthermore, we also show our approach achieves satisfactory results in real data when trained only with virtual datasets, eliminating the need for real scene annotations. Experimental results on both Domain Generalization (DG) and Unsupervised Domain Adaptation (UDA) clearly demonstrate its effectiveness. The codes are available at this https URL.
Submission history
From: Hao Lu [view email][v1] Tue, 17 Oct 2023 15:31:28 UTC (2,664 KB)
[v2] Thu, 30 Nov 2023 07:06:20 UTC (2,662 KB)
[v3] Mon, 25 Dec 2023 16:30:00 UTC (2,665 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.